The data blow shows the student income and expenses in
feeding and school.
Income
|
Feeding Expenses
|
School Expenses
|
903
|
159
|
114
|
1190
|
165
|
204
|
856
|
164
|
231
|
1183
|
143
|
117
|
857
|
156
|
279
|
1086
|
121
|
296
|
1006
|
182
|
280
|
1087
|
157
|
218
|
1182
|
167
|
106
|
1010
|
164
|
235
|
995
|
151
|
207
|
1049
|
163
|
198
|
1028
|
127
|
114
|
909
|
170
|
297
|
1199
|
163
|
220
|
821
|
174
|
190
|
1033
|
152
|
239
|
835
|
135
|
284
|
1138
|
190
|
82
|
1156
|
155
|
179
|
797
|
139
|
93
|
858
|
137
|
213
|
738
|
136
|
283
|
863
|
182
|
258
|
Multiple Regression of the student income on school and feeding expenses.
Summary statistics:
|
|||||||
Variable
|
Observations
|
Obs. with missing data
|
Obs. without missing data
|
Minimum
|
Maximum
|
Mean
|
Std. deviation
|
Income
|
24
|
0
|
24
|
738.000
|
1199.000
|
990.792
|
142.948
|
Feeding Expenses
|
24
|
0
|
24
|
121.000
|
190.000
|
156.333
|
17.731
|
School Expenses
|
24
|
0
|
24
|
82.000
|
297.000
|
205.708
|
68.808
|
Correlation matrix:
|
|||||||
|
Feeding Expenses
|
School Expenses
|
Income
|
||||
Feeding Expenses
|
1
|
-0.060
|
0.162
|
||||
School Expenses
|
-0.060
|
1
|
-0.330
|
||||
Income
|
0.162
|
-0.330
|
1
|
||||
Multicolinearity statistics:
|
|||||||
|
Feeding Expenses
|
School Expenses
|
|||||
Tolerance
|
0.996
|
0.996
|
|||||
VIF
|
1.004
|
1.004
|
|||||
Regression of variable Income:
|
|||||||
Goodness of fit statistics (Income):
|
|||||||
Observations
|
24.000
|
||||||
Sum of weights
|
24.000
|
||||||
DF
|
21.000
|
||||||
R²
|
0.129
|
||||||
Adjusted R²
|
0.046
|
||||||
MSE
|
19495.066
|
||||||
RMSE
|
139.625
|
||||||
MAPE
|
11.625
|
||||||
DW
|
2.451
|
||||||
Cp
|
3.000
|
||||||
AIC
|
239.865
|
||||||
SBC
|
243.399
|
||||||
PC
|
1.120
|
Analysis of variance
(Income):
|
|||||||
Source
|
DF
|
Sum of squares
|
Mean squares
|
F
|
Pr > F
|
||
Model
|
2
|
60589.573
|
30294.786
|
1.554
|
0.235
|
||
Error
|
21
|
409396.385
|
19495.066
|
||||
Corrected Total
|
23
|
469985.958
|
|
|
|
||
Computed against model Y=Mean(Y)
|
|||||||
Model parameters (Income):
|
|||||||
Source
|
Value
|
Standard error
|
t
|
Pr > |t|
|
Lower bound (95%)
|
Upper bound (95%)
|
|
Intercept
|
948.575
|
277.911
|
3.413
|
0.003
|
370.627
|
1526.522
|
|
Feeding Expenses
|
1.148
|
1.645
|
0.698
|
0.493
|
-2.273
|
4.569
|
|
School Expenses
|
-0.667
|
0.424
|
-1.574
|
0.130
|
-1.549
|
0.214
|
|
Equation of the model (Income):
|
|||||||
Income = 948.574558731944+1.14800537969527*Feeding
Expenses-0.667228194082094*School Expenses
|
|||||||
Standardized coefficients (Income):
|
|||||||
Source
|
Value
|
Standard error
|
t
|
Pr > |t|
|
Lower bound (95%)
|
Upper bound (95%)
|
|
Feeding Expenses
|
0.142
|
0.204
|
0.698
|
0.493
|
-0.282
|
0.567
|
|
School Expenses
|
-0.321
|
0.204
|
-1.574
|
0.130
|
-0.745
|
0.103
|
|
Interpretation (Income):
|
||||||||
Given the R2, 13% of the variability of the dependent variable
Income is explained by the 2 explanatory variables.
|
||||||||
Given the p-value of the F statistic computed in the ANOVA
table, and given the significance level of 5%, the information brought by the
explanatory variables is not significantly better than what a basic mean
would bring.
The fact that variables do not bring significant information to
the model may be interpreted in different ways: Either the variables do not
contribute to the model, or some covariates that would help explaining the
variability are missing, or the model is wrong, or the data contain errors.
|
No comments:
Post a Comment